44 research outputs found

    Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a growing concern that global climate change will affect the potential for pathogen transmission by insect species that are vectors of human diseases. One of these species is the former European malaria vector, <it>Anopheles atroparvus</it>. Levels of population differentiation of <it>An. atroparvus </it>from southern Europe were characterized as a first attempt to elucidate patterns of population structure of this former malaria vector. Results are discussed in light of a hypothetical situation of re-establishment of malaria transmission.</p> <p>Methods</p> <p>Genetic and phenotypic variation was analysed in nine mosquito samples collected from five European countries, using eight microsatellite loci and geometric morphometrics on 21 wing landmarks.</p> <p>Results</p> <p>Levels of genetic diversity were comparable to those reported for tropical malaria vectors. Low levels of genetic (0.004 <<it>F</it><sub><it>ST </it></sub><0.086) and phenotypic differentiation were detected among <it>An. atroparvus </it>populations spanning over 3,000 km distance. Genetic differentiation (0.202 <<it>F</it><sub><it>ST </it></sub><0.299) was higher between the sibling species <it>An. atroparvus </it>and <it>Anopheles maculipennis </it>s.s. Differentiation between sibling species was not so evident at the phenotype level.</p> <p>Conclusions</p> <p>Levels of population differentiation within <it>An. atroparvus </it>were low and not correlated with geographic distance or with putative physical barriers to gene flow (Alps and Pyrenées). While these results may suggest considerable levels of gene flow, other explanations such as the effect of historical population perturbations can also be hypothesized.</p

    Data Trends and Variability in Quality Control for Performance and Pay for Performance Specifications: Statistical Analysis

    Get PDF
    Quality assurance programs for hot-mix asphalt (HMA) have evolved from method specifications to quality assurance specifications that distribute responsibilities and risks between contractors and owners. The Illinois Department of Transportation (IDOT) developed two acceptance specifications, quality control for performance (QCP) and pay for performance (PFP), integrating contractor pay incentives and/or disincentives associated with air voids (AV), voids in mineral aggregate (VMA), and in-place density limits. A major factor that could compromise contractors’ pay in both specifications is the variability of test results due to mix production, construction, sampling, and/or inherent testing variability. Therefore, the objective of this project was to understand the distribution and variability of the test results observed under QCP and PFP specifications, as well as the potential causes of variability. The assessment approach included statistical analysis of the test results obtained for the 2015–2017 construction seasons and on-site field observations of 11 projects visited during the 2018 construction season. The pay factors of the 2015–2017 construction seasons showed contractors earned pay incentives under the PFP specification but received disincentives under QCP and PFP specifications. Contractors appeared to have more experience working with QCP projects than PFP projects. The statistical analysis identified that more than 80% of the test results between the contractor and the district were not significantly different. In those cases, it is likely that issues with mix production or construction were the reasons that led to a disincentive. However, there are possible testing issues that need to be addressed by the district and contractor such as reheating consistency and test weight control. Density was a major factor driving contractor disincentives in both specifications, followed by AV. Finally, the site visit identified mix production and construction issues that can lead to possible causes of pay disincentives, including mix switching, dust control, and aggregate contamination.IDOT-R27-189Ope

    Management and Outcome of Cardiac and Endovascular Cystic Echinococcosis

    Get PDF
    Cardiac and vascular involvement are infrequent in classical cystic echinococcosis (CE), but when they occur they tend to present earlier and are associated with complications that may be life threatening. Cardiovascular CE usually requires complex surgery, so in low-income countries the outcome is frequently fatal. This case series describes the characteristics of cardiovascular CE in patients diagnosed and treated at a Tropical Medicine & Clinical Parasitology Center in Spain. A retrospective case series of 11 patients with cardiac and/or endovascular CE, followed-up over a period of 15 years (1995–2009) is reported. The main clinical manifestations included thoracic pain or dyspnea, although 2 patients were asymptomatic. The clinical picture and complications vary according to cyst location. Isolated cardiac CE may be cured after surgery, while endovascular extracardiac involvement is associated with severe chronic complications. CE should be included in the differential diagnosis of cardiovascular disease in patients from endemic areas. CE is a neglected disease and further studies are necessary in order to make more definite management recommendations for this rare and severe form of the disease. The authors propose a general approach based on cyst location: exclusively cardiac, endovascular or both

    Infected pancreatic necrosis: outcomes and clinical predictors of mortality. A post hoc analysis of the MANCTRA-1 international study

    Get PDF
    : The identification of high-risk patients in the early stages of infected pancreatic necrosis (IPN) is critical, because it could help the clinicians to adopt more effective management strategies. We conducted a post hoc analysis of the MANCTRA-1 international study to assess the association between clinical risk factors and mortality among adult patients with IPN. Univariable and multivariable logistic regression models were used to identify prognostic factors of mortality. We identified 247 consecutive patients with IPN hospitalised between January 2019 and December 2020. History of uncontrolled arterial hypertension (p = 0.032; 95% CI 1.135-15.882; aOR 4.245), qSOFA (p = 0.005; 95% CI 1.359-5.879; aOR 2.828), renal failure (p = 0.022; 95% CI 1.138-5.442; aOR 2.489), and haemodynamic failure (p = 0.018; 95% CI 1.184-5.978; aOR 2.661), were identified as independent predictors of mortality in IPN patients. Cholangitis (p = 0.003; 95% CI 1.598-9.930; aOR 3.983), abdominal compartment syndrome (p = 0.032; 95% CI 1.090-6.967; aOR 2.735), and gastrointestinal/intra-abdominal bleeding (p = 0.009; 95% CI 1.286-5.712; aOR 2.710) were independently associated with the risk of mortality. Upfront open surgical necrosectomy was strongly associated with the risk of mortality (p &lt; 0.001; 95% CI 1.912-7.442; aOR 3.772), whereas endoscopic drainage of pancreatic necrosis (p = 0.018; 95% CI 0.138-0.834; aOR 0.339) and enteral nutrition (p = 0.003; 95% CI 0.143-0.716; aOR 0.320) were found as protective factors. Organ failure, acute cholangitis, and upfront open surgical necrosectomy were the most significant predictors of mortality. Our study confirmed that, even in a subgroup of particularly ill patients such as those with IPN, upfront open surgery should be avoided as much as possible. Study protocol registered in ClinicalTrials.Gov (I.D. Number NCT04747990)

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Carbon Footprint Estimation in Road Construction: La Abundancia–Florencia Case Study

    No full text
    The environmental impact of road construction and rehabilitation can be associated with the increase of greenhouse gas (GHG) emissions, which are highly related to climate change. Consequently, departments of transportation have recently focused on the development and implementation of tools to evaluate the performance of projects and minimize GHG emissions. An example is the use of life cycle assessment (LCA) to analyze and quantify the environmental impact of a product, system, or process, from cradle to grave. In this regard, the present case study quantifies the carbon footprint associated with the construction of the La Abundancia&#8211;Florencia highway, located in the province of San Carlos in Costa Rica. The analysis is also intended to generate consciousness both in the public and private sectors on the environmental impacts of road construction. After an LCA study, it was determined that the construction of the hot mix asphalt (HMA) layer generates a carbon footprint of 65.8 kg of CO2e per km of road. In addition, it was evident that HMA production generates the greatest environmental impact, among all the considered LCA production and construction stages, with a GHG contribution of 38% to 39% from bitumen only. Consequently, special attention to HMA production is required in order to minimize GHG emissions
    corecore